On-Chip Memory Architecture Exploration of Embedded System on Chip
نویسنده
چکیده
Today’s feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at low cost and lower energy consumption. SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the area, power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. The on-chip memory organization of embedded processors varies widely from one SoC to another, depending on the application and market segment for which the SoC is deployed. There is a wide variety of choices available for the embedded designers, starting from simple on-chip SPRAM based architecture to more complex cache-SPRAM based hybrid architecture. The performance of a memory architecture also depends on how the data variables of the application are placed in the memory. There are multiple data layouts for each memory architecture that are efficient from a power and performance viewpoint. Further, the designer would be interested in multiple optimal design points to address various market segments. Hence a memory architecture exploration for an embedded system involves evaluating a large design space in the order of 100,000 of design points and each design points having several tens of thousands of data layouts. Due to its large impact on system performance parameters, the memory architecture is often hand-crafted by experienced designers exploring a very small subset of this design space. The vast memory design space prohibits any possibility for a manual analysis. In this work, we propose an automated framework for on-chip memory architecture exploration. Our proposed framework integrates memory architecture exploration and data layout to search the design space efficiently. While the memory exploration selects specific memory architectures, the data layout efficiently maps the given application on to the memory architecture under consideration and thus helps in evaluating the memory architecture. The proposed memory exploration framework works at both logical and physical memory architecture level. Our work addresses on-chip memory architecture for DSP processors that is organized as multiple memory banks, with each back can be a single/dual port banks and with non-uniform bank sizes. Further, our work also address memory architecture exploration for on-chip memory architectures that is SPRAM and cache based. Our proposed method is based on multi-objective Genetic Algorithm based and outputs several hundred Pareto-optimal design solutions that are interesting from a area, power and performance viewpoints within a few hours of running on a standard desktop configuration.
منابع مشابه
Embedded Memory Test Strategies and Repair
The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing. In the proposed m...
متن کاملSimpress: a Simulator Generation Environment for System-on-chip Exploration
of the Thesis SIMPRESS: A Simulator Generation Environment for System-on-Chip Exploration by Asheesh Khare Master of Science in Information and Computer Science University of California, Irvine, 1999 Professor Nikil D. Dutt, Chair Designing Systems-On-Chip (SOC) involves designing embedded applications using customizable embedded processor cores, novel on-chip/o -chip memory hierarchies and hig...
متن کاملCost-aware Topology Customization of Mesh-based Networks-on-Chip
Nowadays, the growing demand for supporting multiple applications causes to use multiple IPs onto the chip. In fact, finding truly scalable communication architecture will be a critical concern. To this end, the Networks-on-Chip (NoC) paradigm has emerged as a promising solution to on-chip communication challenges within the silicon-based electronics. Many of today’s NoC architectures are based...
متن کاملSpecial issue on network-based many-core embedded systems
Many-core embedded system will integrate a large number of cores (several hundred) in order to meet the performance requirements of parallel applications. As the number of cores integrated into a chip increases, the conventional on-chip communication becomes power and performance bottleneck in many-core embedded systems. Network-on-Chip (NoC) architectures have been emerged as the most viable s...
متن کاملMatisse: A System-on-Chip Design Methodology Emphasizing Dynamic Memory Management
MATISSE is a design environment intended for developing systems characterized by a tight interaction between control and data-flow behavior, intensive data storage and transfer, and stringent real-time requirements. Matisse bridges the gap from a system specification, using a concurrent object-oriented language, to an optimized embedded single-chip hardware/software implementation. Matisse supp...
متن کامل